53BP1 and BRCA1 control pathway choice for stalled replication restart
نویسندگان
چکیده
The cellular pathways that restart stalled replication forks are essential for genome stability and tumor prevention. However, how many of these pathways exist in cells and how these pathways are selectively activated remain unclear. Here, we describe two major fork restart pathways, and demonstrate that their selection is governed by 53BP1 and BRCA1, which are known to control the pathway choice to repair double-strand DNA breaks (DSBs). Specifically, 53BP1 promotes a fork cleavage-free pathway, whereas BRCA1 facilitates a break-induced replication (BIR) pathway coupled with SLX-MUS complex-mediated fork cleavage. The defect in the first pathway, but not DSB repair, in a 53BP1 mutant is largely corrected by disrupting BRCA1, and vice versa. Moreover, PLK1 temporally regulates the switch of these two pathways through enhancing the assembly of the SLX-MUS complex. Our results reveal two distinct fork restart pathways, which are antagonistically controlled by 53BP1 and BRCA1 in a DSB repair-independent manner.
منابع مشابه
CtIP mediates replication fork recovery in a FANCD2-regulated manner.
Fanconi anemia (FA) is a chromosome instability syndrome characterized by increased cancer predisposition. Within the FA pathway, an upstream FA core complex mediates monoubiquitination and recruitment of the central FANCD2 protein to sites of stalled replication forks. Once recruited, FANCD2 fulfills a dual role towards replication fork recovery: (i) it cooperates with BRCA2 and RAD51 to prote...
متن کاملMammalian RAD51 paralogs protect nascent DNA at stalled forks and mediate replication restart
Mammalian RAD51 paralogs are implicated in the repair of collapsed replication forks by homologous recombination. However, their physiological roles in replication fork maintenance prior to fork collapse remain obscure. Here, we report on the role of RAD51 paralogs in short-term replicative stress devoid of DSBs. We show that RAD51 paralogs localize to nascent DNA and common fragile sites upon ...
متن کاملEEPD1 Rescues Stressed Replication Forks and Maintains Genome Stability by Promoting End Resection and Homologous Recombination Repair
Replication fork stalling and collapse is a major source of genome instability leading to neoplastic transformation or cell death. Such stressed replication forks can be conservatively repaired and restarted using homologous recombination (HR) or non-conservatively repaired using micro-homology mediated end joining (MMEJ). HR repair of stressed forks is initiated by 5' end resection near the fo...
متن کاملMre11-dependent degradation of stalled DNA replication forks is prevented by BRCA2 and PARP1.
PARP inhibitors are currently being used in clinical trials to treat BRCA1- or BRCA2-defective tumors, based on the synthetic lethal interaction between PARP1 and BRCA1/2-mediated homologous recombination (HR). However, the molecular mechanisms that drive this synthetic lethality remain unclear. Here, we show increased levels of Mre11, a key component of MRN (Mre11-Rad50-Nbs1) complex that play...
متن کاملFunctional interaction between BLM helicase and 53BP1 in a Chk1-mediated pathway during S-phase arrest
Bloom's syndrome is a rare autosomal recessive genetic disorder characterized by chromosomal aberrations, genetic instability, and cancer predisposition, all of which may be the result of abnormal signal transduction during DNA damage recognition. Here, we show that BLM is an intermediate responder to stalled DNA replication forks. BLM colocalized and physically interacted with the DNA damage r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2017